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Abstract—The problem of constructing reachable and null-controllable sets for stationary linear
discrete-time systems with a summary constraint on the scalar control is considered. For the
case of quadratic constraints and a diagonalizable matrix of the system, these sets are built
explicitly in the form of ellipsoids. In the general case, the limit reachable and null-controllable
sets are represented as fixed points of a contraction mapping in the metric space of compact
sets. On the basis of the method of simple iteration, a convergent procedure for constructing
their external estimates with an indication of the a priori approximation error is proposed.
Examples are given.
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1. INTRODUCTION

It is often necessary to take into account various constraints on control actions when studying
dynamic systems, which leads to the unreachability of some terminal states from a given initial state
even in infinite time. As a result, the classical Kalman controllability conditions are not sufficient
to draw a conclusion about the reachability of one or another terminal state. In this regard, it
seems relevant to develop methods for constructing a constructive description of reachable sets, i.e.
sets of terminal states to which the system can be transferred from the origin, and null-controllable
sets, i.e. sets of initial states from which the system can be transferred to the origin, in a finite
number of steps, as well as estimates of the limit reachable and null-controllable sets [1]. The
null-controllable and reachable sets can be used in optimal control problems to construct positional
control for discrete-time systems [2, 3]. Thus it is possible to judge the solvability of these problems
in principle by the apparatus of limit sets.

At the moment, methods for estimating reachable sets of various classes of discrete-time sys-
tems [4], hybrid systems [5] and systems with various types of uncertainties [6] are being actively
developed. Analytical representations of reachable and null-controllable sets for linear systems
with discrete time and constraints on the control function in the sense of the l∞-norm are known.
In particular, it is proved that in the case of linear constraints on the control, the reachable and
null-controllable sets in a finite number of steps are polyhedra [2]. For their limit analogues, nec-
essary and sufficient conditions for the boundedness are formulated [7–9]. At the same time, most
of the papers are either focused on studying only the general properties of reachable and null-
controllable limit sets [8–12], or consider systems with unbounded control [10–14]. Only in a few
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special cases constructive methods for constructing external estimates have been proposed based
on the apparatus of support half-spaces [15, 16] or the maximum principle [17].

For systems with summary control constraints, a description of the reachable and null-controllable
limit sets in the form of polytopes is obtained for the case of constraints in the sense of the l1-
norm [18]. When choosing a lp-norm with an arbitrary value of the parameter p ∈ (1;+∞), the gen-
eral properties of reachable and null-controllable limit sets have been formulated and proven [19]. In
particular, their representation in the form of projections of superellipsoidal sets of finite [20, 21] and
infinite dimensions has been constructed, which is closely related to strictly convex analysis [22, 23],
convex programming [24], and the theory of normed spaces [25] and linear operators [26].

Often in control problems it is necessary to examine a given initial state for reachability and
controllability, which reduces to checking whether a some point in the phase space belongs to the
reachable or controllable limit set. This procedure can be reduced to calculating the Minkowski
functional, but the known results of [19] are not enough to construct it explicitly. Moreover,
describing the Minkowski functional of the image of a convex set under a linear mapping in the
general case is a non-trivial task. For this reason, it is relevant to develop methods implemented
in software that will allow us to calculate exactly the Minkowski functional of the reachable and
null-controllable limit sets or their external estimates of an arbitrary accuracy.

The paper studies the issues of constructing the Minkowski functional of reachable and null-
controllable sets with a summary control constraint in the sense of the lp-norm in the case when
they are bounded. It is possible to explicitly describe this function under quadratic restrictions on
the control and prove that the sets under study are ellipsoids. For the case of arbitrary normed
spaces, the reachable and null-controllable limit sets are described as a fixed-point of a contraction
mapping in the space of compacta with the Hausdorff distance. This allows us to propose a
convergent iterative process for constructing external estimates of these sets with an explicit form
of the a priori error. For a number of parameter values, the resulting estimates have a polyhedral
structure, which makes it possible to use them in computer calculations.

The contents of the article are as follows. In Section 2 the problem is stated. Section 3 discusses
the issues of calculating the Minkowski functional of reachable and null-controllable limit sets.
For the special case of l2-constraints on control and the diagonalizable matrix of the system, the
corresponding sets are constructed explicitly. Section 4 describes the apparatus of contraction
mappings used to construct reachable and null-controllable limit sets. Section 5 suggests a method
for constructing external estimates of these sets of an arbitrary accuracy by the simple iteration
method. Section 6 demonstrates the effectiveness of the developed mathematical apparatus through
various examples.

2. PROBLEM STATEMENT

We consider a linear discrete-time system with summary constraint on scalar control:

x(k + 1) = Ax(k) + bu(k), k ∈ N ∪ {0},

x(0) = x0,

∞∑

k=0

|u(k)|p 6 1,
(1)

where x(k) ∈ R
n is the state vector of the system, u(k) ∈ R is the scalar control action, A ∈ R

n×n,
b ∈ R

n are system matrices, p > 1 is a parameter that determines the type of summary control
constraint.

For an arbitrary N ∈ N ∪ {0} we denote by Yp(N) the reachable set of the system (1), i.e. the
set of states to which the system (1) can be transferred in N steps from the origin by an admissible
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control:

Yp(N) =







{

x ∈ R
n : x =

N−1∑

k=0

AN−k−1bu(k),
N−1∑

k=0

|u(k)|p 6 1

}

, N ∈ N,

{0}, N = 0.

(2)

We denote by Yp,∞ the reachable limit set of the system (1), i.e. the set of states to which the
system (1) can be transferred in any finite number of steps by an admissible control:

Yp,∞ =
∞⋃

N=0

Yp(N). (3)

For an arbitrary N ∈ N ∪ {0} we denote by Xp(N) the null-controllable set of the system (1),
i.e. the set of initial states from which the system (1) can be transferred to the origin in N steps
by an admissible control:

Xp(N) =







{

x0 ∈ R
n : −ANx0 =

N−1∑

k=0

AN−k−1bu(k),
N−1∑

k=0

|u(k)|p 6 1

}

, N ∈ N,

{0}, N = 0.

(4)

We denote by Xp,∞ the set null-controllable limit set of the system (1), i.e. the set of initial states
from which the system (1) can be transferred to the origin in any finite number of steps by an
admissible control:

Xp,∞ =
∞⋃

N=0

Xp(N). (5)

It is required to develop an effective method for constructing an external estimate of the sets (3)
and (5) with any predetermined accuracy. The Hausdorff distance ρH is considered as an accuracy
criterion, and all sets are assumed to be elements of the complete metric space (Kn, ρH) [27]:

Kn = {X ⊂ R
n : X is compact},

ρH(X ,Y) = max

{

sup
x∈X

inf
y∈Y

‖x− y‖r; sup
y∈Y

inf
x∈X

‖x− y‖r

}

,

‖x‖r =







(
n∑

i=1

|xi|
r

) 1

r

, r > 1,

max
i=1,n

|xi|, r = ∞.

3. THE PROBLEM OF AN EXACT DESCRIPTION OF THE REACHABLE
AND 0-CONTROLLABLE LIMIT SETS

Let us denote by Ep(∞) a unit ball in the normed space lp [25]:

Ep(∞) =

{

u ∈ lp :
∞∑

k=1

|uk|
p
6 1

}

.

We also identify the sequence B = (b1, b2, . . .) ∈ lnq with the linear operator B : lp → R
n
r , acting

according to the following rule:

Bu =
∞∑

k=1

ukbk.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 4 2024



354 IBRAGIMOV

It is assumed here that the numbers p and q satisfy the relation 1
p
+ 1

q
= 1, and the space R

n
r is

a normed space (Rn, ‖ · ‖r). Hence, taking into account the Riesz theorem [25], it follows that the
operator B is bounded, which allows us to consider it as an element of the normed space lnq with
an operator norm defined on it:

‖B‖lnq = sup
u∈Ep(∞)

‖Bu‖r.

For simplicity, we also identify an arbitrary sequence y ∈ lq with the linear and bounded functional
y : lp → R generated by it according to the Riesz theorem:

(y, u) =
∞∑

k=1

ykuk.

The necessary and sufficient conditions for the boundedness of the sets (3) and (5), determined
by the system matrices A and b, are essential. The Jordan basis of the matrix A is a set of linearly
independent vectors h1, . . . , hn ⊂ R

n, which specifies the similarity transformation of the matrix A

to its real Jordan canonical form [28, Section 3.4 Ch. 3]. Such a basis is unique up to non-zero
factors and to the order of the vectors h1, . . . , hn, and each basis vector corresponds to some Jordan
cell, i.e. to some eigenvalue of the matrix A. If we divide the elements of the Jordan basis into three
sets according to the criterion of whether they correspond to an eigenvalue of the matrix A greater
than, equal to, or less than 1 in modulus, then we can determine the following three invariant
subspaces:

L<1 = Lin{hi : hi correspond to eigenvalue λ, |λ| < 1},

L=1 = Lin{hi : hi correspond to eigenvalue λ, |λ| = 1},

L>1 = Lin{hi : hi correspond to eigenvalue λ, |λ| > 1}.

In [19] it is demonstrated that Yp,∞ and Xp,∞ are bounded if and only if the following conditions
are true respectively:

Y∞ = (b,Ab,A2b, . . .) ∈ lnq or b ∈ L<1, (6)

X∞ = (A−1b,A−2b, . . .) ∈ lnq or b ∈ L>1. (7)

In these cases the following representations are valid:

Yp,∞ = Y∞Ep(∞) ∈ Kn, (8)

X p,∞ = X∞Ep(∞) ∈ Kn. (9)

According to (8) and (9), the limit sets Yp,∞, Xp,∞ are convex, and therefore, for their description
by algebraic inequalities, the Minkowski functional can be used [25, Section 3 §2 ch. III]:

µ(u,U) = inf{t > 0: u ∈ tU}.

Let us demonstrate the complexity of calculating the Minkowski functional of the sets (3) and (5)
for an arbitrary value of the parameter p, and also give a special case when such description can
be constructed.

Lemma 1. Let L1, L2 be normed spaces, U ⊂ L1 is convex and bounded set, 0 ∈ intU , B : L1 →
L2 is the linear, surjective and bounded operator.

Then

µ(x,BU) = inf
u∈B−1({x})

µ(u,U).

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 4 2024



ON THE EXTERNAL ESTIMATION OF REACHABLE 355

The proof of the Lemma 1 and all other statements is given in the Appendix.

Let us obtain the corollaries of Lemma 1, setting L1 = lp, L2 = R
n, U = Ep(∞). The choice of

norm in the space Rn is unimportant, since the value of the Minkowski functional does not depend
on the norm, and due to the equivalence of all norms in the finite-dimensional space [25]. Hence,
the operator B is limited for any norm in R

n. But for brevity of notation we assume that R
n is

Euclidean with the scalar product defined by the following relation:

(x, y) = xTy =
n∑

i=1

xiyi.

Let us introduce the nonlinear operator Ip(u) : lp → lq according to the following formula:

Ip(u) =
(

sgn(u1)|u1|
p−1, sgn(u2)|u2|

p−1, . . .
)

.

The inverse operator to Ip is the operator Iq. Let us denote by B∗ : Rn → lq the operator adjoint
to B.

Lemma 2. Let B ∈ lnq be the surjection. Then for any x ∈ Rn it is true that

µ(x,BEp(∞)) = ‖B∗λ‖q−1
lq

,

where λ ∈ R
n satisfies the following condition:

BIq(B
∗λ) = x. (10)

According to Lemma 2 and the representations (8) and (9), the calculation of the Minkowski
functional for the reachable and controllable limit sets can be reduced to solving a system of
nonlinear equations of the form (10) when choosing operators Y∞ and X∞ as B, respectively,
which is a nontrivial problem in the general case. Although, when p = q = 2, the solution of the
system can be obtained in explicit form.

Corollary 1. Let p = q = 2, B ∈ lnq be the surjection.

Then for any x ∈ R
n it is true that

µ(x,BE2(∞)) =
√

xT(BB∗)−1x.

The application of Corollary 1 to construct Y2,∞ and X2,∞ is determined by the possibility of
constructing explicitly the matrix BB∗ ∈ R

n×n, which, according to the definition of the operator B,
reduces to the calculation of a convergent series:

BB∗ =
∞∑

k=1

bkb
T
k ,

where B is assumed to be equal to Y∞ or X∞.

Lemma 3. Let A ∈ R
n×n have n linearly independent eigenvectors h1, . . . , hn ∈ C

n corresponding
to the eigenvalues λ1, . . . , λn ∈ C, Λ = diag(λ1, . . . , λn), S = (h1, . . . , hn) ∈ C

n×n. The following
notations are used:

H = S






β11 . . . β1n
...

. . .
...

βn1 . . . βnn




ST,






α11 . . . α1n
...

. . .
...

αn1 . . . αnn




 = S−1bbT(S−1)T, βij =







αij

1− λiλj
, λiλj 6= 1,

0, λiλj = 1.
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Then

1) in the case b ∈ L<1 the following representation is true:

Y2,∞ = {x ∈ R
n : xTHY ,∞x 6 1},

where HY ,∞ = H−1;
2) in the case b ∈ L>1 and detA 6= 0 the following representation is true:

X 2,∞ =
{

x ∈ R
n : xTHX ,∞x 6 1

}

,

where H−1
X ,∞ = −H−1.

4. REACHABLE AND NULL-CONTROLLABLE LIMIT SETS AS THE FIXED-POINT

Let us present properties of the contraction mapping principle and fixed-points that are useful
for representing the sets (3) and (5). It is known that the sets (2) and (4) are convex compact sets
and can be represented as the image of Ep(∞) under a linear mapping [19, Lemma 9]:

Yp(N) = YNEp(∞), YN = (b,Ab, . . . , AN−1b, 0, . . .) ∈ lnq , (11)

Xp(N) = XNEp(∞), XN = (A−1b,A−2b, . . . , A−N b, 0, . . .) ∈ lnq , detA 6= 0. (12)

Let us represent the operators X∞ and Y∞ as fixed points of the contraction mapping. To do
this, we introduce two linear and bounded operators MULTA,R : lnq → lnq :

MULTAB
′ = (Ab1, Ab2, . . .), A ∈ R

n×n,

RB′ = (0, b1, b2, . . .).

For arbitrary A ∈ R
n×n, b ∈ R

n we define the mapping FA,b : l
n
q tolnq as follows:

FA,b(B
′) = R ◦MULTAB

′ + (b, 0, 0, . . .) = (b,Ab1, Ab2, . . .). (13)

For an arbitrary M ∈ N we denote by F
(M)
A,b : lnq → lnq the M -fold composition of the mapping FA,b:

F
(M)
A,b (B

′) = (FA,b ◦ . . . ◦ FA,b
︸ ︷︷ ︸

M

)(B′).

Lemma 4. Let Y∞ ∈ lnq . Then Y∞ is a fixed-point of the mapping FA,b.

Lemma 5. Let detA 6= 0, X∞ ∈ lnq . Then X∞ is a fixed-point of the mapping FA−1,A−1b.

Lemma 6. Let all eigenvalues of the matrix A ∈ R
n×n be strictly less than 1 in absolute value.

Then for any b ∈ R
n

1) there exists M ∈ N such that AM : Rn
r → R

n
r is a contraction mapping with contraction factor

αr ∈ [0; 1);

2) F
(M)
A,b is the the contraction mapping with the contraction factor αr.

Corollary 2. Let all eigenvalues of the matrix A ∈ R
n×n be strictly less than 1 in absolute value.

Then Y∞ is the only fixed-point of the mapping FA,b. If M ∈ N is a number such that AM : Rn
r → R

n
r

is a contraction mapping with contraction factor αr ∈ [0; 1), then

‖Y∞ − YNM‖lnq 6
αN
r

1− αr
‖YM‖lnq .
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Corollary 3. Let all eigenvalues of the matrix A ∈ R
n×n be strictly greater than 1 in absolute

value. Then X∞ is the only fixed-point of the mapping FA−1,A−1b. If M ∈ N is a number such that
A−M : Rn

r → R
n
r is a contraction mapping with contraction factor βr ∈ [0; 1), then

‖X∞ −XNM‖lnq 6
βN
r

1− βr
‖XM‖lnq .

Estimates for the operators Y∞ andX∞, obtained by the simple iteration method in Corollaries 2
and 3, can also be extended to the sets (3) and (5).

Lemma 7. Let B′, C ′ ∈ lnq . Then

ρH(B′Ep(∞), C ′Ep(∞)) 6 ‖B′ − C ′‖lnq .

Theorem 1. Let all eigenvalues of A ∈ R
n×n be strictly less than 1 in absolute value, M ∈ N

such that the mapping AM : Rn
r → R

n
r is is contraction with contraction factor αr ∈ [0; 1). Then for

any N ∈ N the following inequality holds:

ρH

(

Yp,∞,Yp(NM)
)

6
αN
r

1− αr
‖YM‖lnq .

Theorem 2. Let all eigenvalues A ∈ R
n×n be strictly greater than 1 in absolute value, M ∈ N

such that the mapping A−M : Rn
r → R

n
r is contraction with contraction factor βr ∈ [0; 1). Then for

any N ∈ N the following inequality holds:

ρH

(

X p,∞,Xp(NM)
)

6
βN
r

1− βr
‖XM‖lnq .

Corollary 2 and Theorem 1 are based on the fact that the constructed operator F
(M)
A,b turns out

to be contractive if the matrix AM has the similar property, and it also derives the contraction
factor of this matrix. It is possible to ensure that for some M ∈ N the mapping AM turns out to
be a contraction if and only if all eigenvalues of A are strictly less than 1 in modulus. It should be
noted that this condition is only a sufficient condition for the boundedness of the reachable limit
set Yp,∞, but not necessary. A necessary and sufficient condition for boundedness is the inclusion
b ∈ L<1 [19]. Even if the matrix A has eigenvalues greater than or equal 1 in modulus, satisfying
the condition b ∈ L<1 will lead to the boundedness of the set Yp,∞. However, it is impossible to
directly use the apparatus of contraction mappings for its construction due to the absence of a
conctraction factor of matrix AM for any M ∈ N.

Nevertheless, for b ∈ L<1 it is possible to reduce the phase space of the system (1) to an
invariant subspace L<1, on which the mapping A have only its eigenvalues that are strictly less
than 1 in absolute value. This allow us to use Corollary 2 and Theorem 1 to construct the set Yp,∞.
Similar reasoning is valid for the set Xp,∞, Corollary 3 and Theorem 2 when replacing A with A−1,
b with A−1b and L<1 with L>1.

Let us separately note the case, when expanding b in a real Jordan basis A, the components
corresponding to L=1 turn out to be different from 0, i.e. A has eigenvalues modulo 1. Then both
sets Yp,∞ and Xp,∞ turn out to be unbounded, which does not allow them to be represented as
fixed points of contraction mappings.

5. METHOD FOR CONSTRUCTING EXTERNAL ESTIMATES OF LIMIT SETS

Let us consider the questions of constructing external estimates for the sets Yp,∞ and Xp,∞.
In [19] methods are proposed for constructing the sets Yp(N) and Xp(N) for any arbitrary N ∈ N
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based on an exact description of their support functions. Moreover, Theorems 1 and 2 give an a
priori estimate of the accuracy when considering the sets (2) and (4) as an internal approximation
of the limit sets (3) and (5) respectively. In combination with the properties of the Hausdorff
distance, this also allows us to construct an external approximation.

To do this, let us denote by Br
R(x0) ⊂ R

n
r a ball of radius R with centers at x0 in the space R

n
r .

Theorem 3. Let all eigenvalues of A ∈ R
n×n be strictly less than 1 in absolute value, M ∈ N be

such that the mapping AM : Rn
r → R

n
r is contraction with contraction factor αr ∈ [0; 1). Then for

any N ∈ N the following inclusion is true:

Yp,∞ ⊂ Yp(NM) + Br
RN

(0),

RN =
αN
r

1− αr
‖YM‖lnq .

Theorem 4. Let all eigenvalues A ∈ R
n×n be strictly greater than 1 in absolute value, M ∈ N be

such that the mapping A−M : Rn
r → R

n
r is contraction with contraction factor βr ∈ [0; 1). Then for

any N ∈ N the following inclusion is true:

Xp,∞ ⊂ Xp(NM) + Br
RN

(0),

RN =
βN
r

1− βr
‖XM‖lnq .

Since the value RN converges to 0 under the assumptions of Theorems 3 and 4, these statements
make it possible to construct, with an arbitrary accuracy, external estimates of the reachable
limit sets Yp,∞ and null-controllable limit sets Xp,∞ of system (1) under the assumption that
reachable sets {Yp(N)}∞N=0 and null-controllable sets {Xp(N)}∞N=0 in a finite number of steps
were constructed. To construct them, we can use the results presented in [19, Theorem 1], where
for Kallman-controlled systems for the sets (2) and (4) the descriptions of an arbitrary support
hyperplane and tangent points are explicitly indicated depending on the support vector.

It is somewhat difficult to calculate the values of M , αr, βr, ‖YM‖lnq and ‖XM‖lnq . In general,

αr is the operator norm of AM : Rn
r → R

n
r :

αr = max
‖x‖r61

‖AMx‖r. (14)

The convex programming problem (14) can be solved numerically for a chosen value of the parame-
ter r ∈ [1;∞]. Moreover, for the values r ∈ {1, 2,∞} the analytical representations are known [25]:

α1 = max
16j6n

n∑

i=1

|aij|, α2 =

√
√
√
√

n∑

i=1

n∑

j=1

a2ij , α∞ = max
16i6n

n∑

j=1

|aij |,

where aij denotes the components of the matrix AM . The value of βr is determined in a similar
way by replacing the matrix A with A−1.

The value of M can be determined by sequentially calculating αr or βr until the condition
αr ∈ [0; 1) is satisfied when constructing Yp,∞ or the condition βr ∈ [0; 1) is satisfied when con-
structing Xp,∞. A priori estimates of M are unknown, although for the case, where A has n

linearly independent eigenvectors, M = 1.

We present the methods for calculating ‖YM‖lnq and ‖XM‖lnq in the form of the following theorem.
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Theorem 5. Let for some M ∈N the following representation be true:

B′ =






y1

...
yn




 =






b11 . . . b1M 0 . . .
...

...
...

bn1 . . . bnM 0 . . .




 ∈ lnq .

Then the following estimates are valid:

1) for all r∈ [1;∞) and p > 1, the calculation of ‖B′‖lnq reduces to solving the following convex
programming problem:

(

‖B′‖lnq

)r
= max

M∑

k=1

|uk|p=1

n∑

i=1

∣
∣
∣
∣
∣

M∑

k=1

bikuk

∣
∣
∣
∣
∣

r

;

2) for all r∈ [1;∞) and p > 1

‖B′‖lnq 6





n∑

i=1

(
M∑

k=1

|bik|
q

) r
q





1

r

;

3) if M = 1, then

‖B′‖lnq =

(
n∑

i=1

|bi1|
r

) 1

r

;

4) if r = p = 2, then

‖B′‖lnq =
√

max
λ∈σ(BTB)

|λ|,

B =






b11 . . . b1M
...

...
bn1 . . . bnM




 ∈R

n×M ,

σ(A) = {λ∈C : λ is eigenvalue of A};

5) if r = ∞, then

‖B′‖lnq = max
i=1,n

(
M∑

k=1

|bik|
q

) 1

q

;

if r = 1, then

‖B′‖lnq = max
γi ∈{−1;1}

i=1,n

(
M∑

k=1

∣
∣
∣
∣
∣

n∑

i=1

γibik

∣
∣
∣
∣
∣

q)
1

q

.

Theorem 5 allows us to use external estimates obtained in Theorems 3 and 4 for any value of the
parameter r. However the most suitable values are r = 1 and r = ∞, since in these cases analytical
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expressions for αr, βr, ‖YM‖lnq and ‖XM‖lnq are known, and the ball Br
R(0) is a polyhedron:

B1
R(0) = conv















±1
0
...
0









,









0
±1
...
0









,









0
0
...

±1















,

B∞
R (0) = conv















γ1
γ2
...
γn









: γi ∈{−1; 1}, i = 1, n







.

6. EXAMPLES

Let us demonstrate the results of Theorems 3–5 by examples.

Example 1. Let the system (1) have the following matrices for p = 4
3 :

A = 0.9

(

cos(2) sin(2)
− sin(2) cos(2)

)

, b =

(

2
2

)

. (15)

Consider two values of r∈{1,∞}. Let’s put M = 4. Then the corresponding operator norms AM ,
defined by the relations (14), take the fiollowing values:

α1 = α∞ = 0.4648.

Taking into account items 5 and 6 of Theorem 5 the following equalities are true:

‖YM‖ln
4
=

{

4.0976, r = 1,

2.4962, r = ∞.

Let us calculate, according to Theorem 3, the value of RN for different N ∈{1, 2, 3, 4}. In the case
r = 1 we obtain the following results:

R1 = 3.5592, R2 = 1.6545, R3 = 0.7691, R4 = 0.3575.

In the case r = ∞ we obtain the following results:

R1 = 2.1681, R2 = 1.0078, R3 = 0.4685, R4 = 0.2178.

Then we can construct estimates for the set Y 4

3
,∞ according to Theorem 3. The results are pre-

sented in Figs. 1 and 2. Sets Y 4

3

(4), Y 4

3

(8), Y 4

3

(12), Y 4

3

(16) are constructed by the method presented

in [19]. The dotted lines indicate external estimates of the set Y 4

3
,∞ for different N ∈{1, 2, 3, 4}

and for r = 1 in Fig. 1 and for r = ∞ in Fig. 2.

Example 2. Let the system (1) have the following matrices for p = 4:

A =

(

0.8 0.2
0 0.7

)

, b =

(

1
2

)

. (16)

Consider two values of r∈{1,∞}. Let’s put M = 4. Then the corresponding operator norms AM ,
defined by the relations (14), take the following values:

α1 = 0.5791, α∞ = 0.7486.
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Fig. 1. Reachable sets Y 4

3

(4), Y 4

3

(8), Y 4

3

(12), Y 4

3

(16) (solid lines) and estimates Y 4

3
,∞ (dotted lines), obtained

based on Theorem 3 for r = 1 and system matrices (15).

Fig. 2. Reachable sets Y 4

3

(4), Y 4

3

(8), Y 4

3

(12), Y 4

3

(16) (solid lines) and estimates Y 4

3
,∞ (dotted lines), obtained

based on Theorem 3 for r = ∞ and system matrices (15).
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Taking into account items 5 and 6 of Theorem 5 the following equalities are true:

‖YM‖ln
4
=

{

6.8891, r = 1,

3.6717, r = ∞.

Let us calculate, according to Theorem 3, the value of RN for different N ∈{1, 2, 3, 4}. In the case
r = 1 we obtain the following results:

R1 = 9.4784, R2 = 5.4890, R3 = 3.1887, R4 = 1.8408.

In the case r = ∞ we obtain the following results:

R1 = 10.9333, R2 = 8.1847, R3 = 6.1271, R4 = 4.5867.

Then we can construct estimates for the set Y4,∞ according to Theorem 3. The results are pre-
sented in Figs. 3 and 4. The sets Y4(4), Y4(8), Y4(12), Y4(16) are constructed by the method
presented in [19]. The dotted lines indicate external estimates of the set Y4,∞ for different
N ∈{1, 2, 3, 4} for r = 1 in Fig. 3 and for r = ∞ in Fig. 4.

In Example 1 the approximation accuracy turned out to be higher for r = ∞, while in Example 2
better results are obtained for r = 1. In the general case, it is possible to calculate estimates for
various values of the parameter r∈ [1;∞], and consider the final estimate in the form of their
intersection.

Example 3. Let us consider separately the case p = 2, for which reachable limit sets can be
constructed explicitly based on Lemma 3. Note that from the point of view of Lemma 3 it does not
matter whether the eigenvalues of the matrix A are real or complex. In intermediate calculations
when constructing the matrix HY ,∞, complex numbers may be used, but the resulting matrix of
quadratic form, which defines the structure of Y2,∞, will be real in any case.

For the case (15) it is true that

λ1 = −0.3329 + 0.7274i, λ2 = −0.3329 − 0.7274i, S =

(

0.7071 0.7071
0.7071i −0.7071i

)

,

(

α11 α12

α21 α22

)

=

(

−4i 4
4 4i

)

,

(

β11 β12
β21 β22

)

=

(

−0.8625 − 2.5257i 11.1111
11.1111 −0.8625 + 2.5257i

)

.

From here we finally get that

HY ,∞ =

(

0.1029 −0.0217
−0.0217 0.0881

)

.

The results are presented in Fig. 5. The sets Y2(2), Y2(3), Y2(4), Y2(5) were constructed by the
method from [19].

Similarly, for the case (16) it is true that

λ1 = −0.8, λ2 = −0.7, S =

(

1 −0.8944
0 0.4472

)

,

(

α11 α12

α21 α22

)

=

(

25 22.3607
22.3607 20

)

,

(

β11 β12
β21 β22

)

=

(

69.4444 50.8197
50.8197 39.5197

)

.
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Fig. 3. Reachable sets Y4(4), Y4(8), Y4(12), Y4(16) (solid lines) and estimates Y4,∞ (dotted lines), obtained
based on Theorem 3 for r = 1 and system matrices (16).

Fig. 4. Reachable sets Y4(4), Y4(8), Y4(12), Y4(16) (solid lines) and estimates Y4,∞ (dotted lines), obtained
based on Theorem 3 for r = ∞ and system matrices (16).
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Fig. 5. Reachable sets Y2(2), Y2(3), Y2(4), Y2(5) (solid lines) and Y2,∞ (dotted line) obtained by Lemma 3
for the matrices of the system (15).

Fig. 6. Reachable sets Y2(2), Y2(3), Y2(4), Y2(5) (solid lines) and Y2,∞ (dotted line) obtained by Lemma 3
for the matrices of the system (16).
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From here we finally get that

HY ,∞ =

(

0.2788 −0.2503
−0.2503 0.3522

)

.

The results are presented in Fig. 6. The sets Y2(2), Y2(3), Y2(4), Y2(5) are constructed by the
method from [19].

Example 4. Taking into account the relations (12) and (11) the results of Example 1 and Figs. 1
and 2 correspond to similar constructions for the null-controllable sets {X 4

3

(N)}∞N=0 and X 4

3
,∞

when replacing A with A−1 and b with A−1b:

A =
10

9

(

cos(2) − sin(2)
sin(2) cos(2)

)

, b =







10

9
(cos(2) − sin(2))

10

9
(cos(2) + sin(2))






.

Also the results of the Example 2 and Figs. 3 and 4 correspond to similar constructions for the
null-controllable sets {X4(N)}∞N=0 and X4,∞ when replacing A with A−1 and b with A−1b:

A =







5

4
−

5

14

0
10

7






, b =







15

28
20

7






.

7. CONCLUSION

The paper considers the problem for constructing reachable and 0-controllable limit sets for
stationary linear discrete-time systems with a summary constraint on scalar control. It is demon-
strated that in the general case, the calculation of the Minkowski functional for given sets reduces
to the operation of projecting a ball from the normed space lp onto a finite-dimensional phase
space and to solving systems of nonlinear equations. For the case of quadratic constraints and a
diagonalizable matrix of the system, these equations can be solved analytically, which makes it
possible to describe the Minkowski functional in explicit form. In the general case, the reachable
and null-controllable limit sets can be represented as fixed points of a contraction mapping in the
metric space of compacta, the contraction coefficient of which can be calculated numerically. This
fact allows us to estimate the error of the simple iteration method when constructing these sets,
which, in combination with the properties of the Hausdorff distance, leads to the possibility of
constructing their external estimates of an arbitrary order of accuracy. In a particular case, when
choosing the Minkowski or Chebyshev norm as a norm in the phase space, the resulting estimates
have a polyhedral structure.

It is planned to generalize the obtained results to systems with vector control in the future.
In particular, this requires developing a model for taking into account summary restrictions, for
example, by using the Minkowski functional with respect to some cost set. Another problem is
the construction of a recurrent description for the reachable and null-controllable sets, which would
allow us to search for their limit analogues in the form of fixed points, similar to the results obtained
for the case of separate control restrictions at each moment of time [15].
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APPENDIX

Proof of Lemma 1. By the definition of the Minkowski functional, for any x∈L2 the following
relations are true:

µ(x,BU) = inf{t > 0: x∈ tBU} = inf{t > 0: ∃u∈ tU , x = Bu}

= inf{t > 0: ∃u∈B−1({x}), u∈ tU} = inf
u∈B−1({x})

inf{t > 0: u∈ tU} = inf
u∈B−1({x})

µ(u,U).

Lemma 1 is proven.

Proof of Lemma 2. Since, due to the Riesz theorem, the operator B is linear and bounded, then
according to Lemma 1

(µ(x,BEp(∞)))p =

(

inf
u∈B−1({x})

µ(u, Ep(∞))

)p

= inf
Bu=x
u∈ lp

∞∑

k=1

|uk|
p. (A.1)

To solve the optimization problem (A.1) we will use the Lagrange multiplier method for infinite-
dimensional spaces [29]. The Lagrange function for λ∈R

n has the following form

L(u, λ) =
∞∑

k=1

|uk|
p + λT(x−Bu).

Then the search for a minimum in the problem (A.1) is reduced to solving the system of equations







∂L

∂uk
= 0, k ∈N,

Bu = x,

{

pIp(u)−B∗λ = 0,

Bu = x,







u = I−1
p

(
1

p
B∗λ

)

= Iq

(
1

p
B∗λ

)

,

Bu = x.

Hence, taking into account (A.1) and the identity
∞∑

k=1
|uk|

p = (u, Ip(u)) it follows that

(µ(x,BEp(∞))p =

(

Iq

(
1

p
B∗λ

)

, Ip

(

Iq

(
1

p
B∗λ

)))

=

(

Iq

(
1

p
B∗λ

)

,
1

p
B∗λ

)

=

∥
∥
∥
∥

1

p
B∗λ

∥
∥
∥
∥

q

lq

,

BIq

(
1

p
B∗λ

)

= x.

Redesignating 1
p
λ by λ, we finally obtain

µ(x,BEp(∞)) = ‖B∗λ‖
q

p

lq
= ‖B∗λ‖q−1

lq
,

where λ∈R
n is determined from (10).

Lemma 2 is proven.

Proof of Corollary 1. By definition, the operator I2 is identical. Then the condition (10) take
the form

BB∗λ = x.

Since B is surjective, the operator BB∗ : Rn → R
n and the matrix generating it are invertible,

which leads to the relation

λ = (BB∗)−1x.
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Taking into account Lemma 2 we obtain

µ(x,BE2(∞)) = ‖B∗(BB∗)−1x‖2 =
√

(B∗(BB∗)−1x,B∗(BB∗)−1x) =
√

xT(BB∗)−1x.

Corollary 1 is proven.

Proof of Lemma 3. Let B = Y∞. Then, taking into account the spectral decomposition of the
matrix A = SΛS−1, the following equalities are true for all k ∈N:

bkb
T
k = Ak−1bbT(Ak−1)T = SΛk−1S−1bbT(S−1)TΛk−1ST

= Sdiag(λk−1
1 , . . . , λk−1

n )






α11 . . . α1n
...

. . .
...

αn1 . . . αnn




 diag(λk−1

1 , . . . , λk−1
n )ST

= S






(λ1λ1)
k−1α11 . . . (λ1λn)

k−1α1n
...

. . .
...

(λnλ1)
k−1αn1 . . . (λnλn)

k−1αnn




ST.

Due to the inclusion b∈L<1, the coefficients αij are equal to zero for all i, j = 1, n such that at
least one of the two eigenvalues λi or λj turns out to be greater than or equal to 1:

αij = 0, if |λi| > 1 or |λj | > 1. (A.2)

Hence, taking into account the expression for the sum of an infinite decreasing geometric progres-
sion, we get the following equality:

∞∑

k=1

(λiλj)
k−1αij =







αij

1− λiλj
, |λi| < 1 and |λj | < 1,

0, |λi| > 1 or |λj | > 1,

which, due to the (A.2), coincides with the definition of βij .

Then the following chain of equalities is true:

BB∗ =
∞∑

k=1

bkb
T
k = S












∞∑

k=1

(λ1λ1)
k−1α11 . . .

∞∑

k=1

(λ1λn)
k−1α1n

...
. . .

...
∞∑

k=1

(λnλ1)
k−1αn1 . . .

∞∑

k=1

(λnλn)
k−1αnn












ST =

= S






β11 . . . β1n
...

. . .
...

βn1 . . . βnn




ST = H.

This, taking into account Corollary 1, implies the equality HY ,∞ = H−1.

The second item of Lemma 3 is proven in a similar way under the redesignation B = X∞.

Lemma 3 is proven.

Proof of Lemma 4. The proof follows directly from (6) and (13).

Proof of Lemma 5. The proof follows directly from (7) and (13).
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Proof of Lemma 6. Since all eigenvalues of the matrix A are strictly less than 1 in absolute

value, according to [22, Theorem 5.6.12] the relation ‖Ak‖
k→∞
−→ 0 is true. Then, by definition of the

limit there is M ∈N for αr ∈ [0; 1) such that ‖AM‖ = sup‖x‖r61 ‖A
Mx‖r < αr. Since the inequality

‖AM (x− y)‖r 6 ‖AM‖‖x− y‖r 6 αr‖x− y‖r

is true, AM is a contraction with the contraction factor αr ∈ [0; 1).

Let B′ = (b1, b2, . . .)∈ lnq , C
′ = (c1, c2, . . .)∈ lnq . Then

∥
∥
∥F

(M)
A,b (B

′)− F
(M)
A,b (C

′)
∥
∥
∥
lnq

=
∥
∥
∥(b,Ab, . . . AM−1b,AM b1, A

M b2, . . .)

− (b,Ab, . . . AM−1b,AM c1, A
Mc2, . . .)

∥
∥
∥
lnq

=
∥
∥
∥(0, . . . , 0, AM (b1 − c1), A

M (b2 − c2), . . .)
∥
∥
∥
lnq

=
∥
∥
∥(AM (b1 − c1), A

M (b2 − c2), . . .)
∥
∥
∥
lnq

= sup
u∈Ep(∞)

‖(AM (b1 − c1), A
M (b2 − c2), . . .)u‖r

= sup
u∈Ep(∞)

∥
∥
∥
∥
∥

∞∑

k=1

AM (bk − ck)uk

∥
∥
∥
∥
∥
r

= sup
u∈Ep(∞)

∥
∥
∥
∥
∥
AM

∞∑

k=1

bkuk −AM
∞∑

k=1

ckuk

∥
∥
∥
∥
∥
r

6 sup
u∈Ep(∞)

αr

∥
∥
∥
∥
∥

∞∑

k=1

bkuk −
∞∑

k=1

ckuk

∥
∥
∥
∥
∥
r

= αr‖B
′ − C ′‖lnq .

Lemma 6 is proven.

Proof of Corollary 2. The mapping F
(M)
A,b is a contraction due to Theorem 6, and the space lnq

is complete. Then, by virtue of the Banach contraction mapping principle [25], there is a unique

fixed-point of F
(M)
A,b . Moreover, by construction, a fixed-point of the mapping FA,b must also be a

fixed-point of the mapping F
(M)
A,b . Taking into account Lemma 4 the unique fixed-point of F

(M)
A,b is

Y∞ ∈ lnq . Hence, Y∞ is the unique fixed-point of FA,b.

Note that the representation F
(NM)
A,b (O) = YNM is valid, where by O : lp → R

n
r denotes the zero

operator, which is identified with the zero sequence (0, 0, . . .)∈ lnq . Then according to Theorem 6

‖Y∞ − YNM‖lnq =
∥
∥
∥F

(M)
A,b (Y∞)− F

(M)
A,b

(

F
(NM−M)
A,b (O)

)∥
∥
∥
lnq

6 αr

∥
∥
∥Y∞ − F

(NM−M)
A,b (O)

∥
∥
∥
lnq

6 αr

∥
∥
∥Y∞ − F

(NM)
A,b (O)

∥
∥
∥
lnq
+ αr

∥
∥
∥F

(NM)
A,b (O)− F

(NM−M)
A,b (O)

∥
∥
∥
lnq

6 αr

∥
∥
∥Y∞ − F

(NM)
A,b (O)

∥
∥
∥
lnq
+ αN

r

∥
∥
∥F

(M)
A,b (O)−O

∥
∥
∥
lnq

= αr ‖Y∞ − YNM‖lnq + αN
r ‖YM‖lnq ,

‖Y∞ − YNM‖lnq 6
αN
r

1− αr
‖YM‖lnq .

Corollary 2 is proven.

Proof of Corollary 3. The proof follows from Corollary 2 by replacing A with A−1, b with A−1b

in conjunction with Lemma 5 and the fact that the eigenvalues of A−1 are inverse of the eigenvalues
of A [28].

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 4 2024



ON THE EXTERNAL ESTIMATION OF REACHABLE 369

Proof of Lemma 7. Let’s consider the value

ρH(B′Ep(∞), C ′Ep(∞))

= max

{

sup
x∈B′Ep(∞)

inf
y ∈C′Ep(∞)

‖x− y‖r; sup
x∈C′Ep(∞)

inf
y ∈B′Ep(∞)

‖x− y‖r

}

= max

{

sup
u∈Ep(∞)

inf
v∈Ep(∞)

‖B′u− C ′v‖r; sup
u∈Ep(∞)

inf
v∈Ep(∞)

‖C ′u−B′v‖r

}

,

sup
u∈Ep(∞)

inf
v ∈Ep(∞)

‖C ′u−B′v‖r = sup
u∈Ep(∞)

inf
v ∈Ep(∞)

‖B′u− C ′v‖r

= sup
u∈Ep(∞)

inf
v∈Ep(∞)

‖B′u− C ′u+ C ′u− C ′v‖r

6 sup
u∈Ep(∞)

inf
v∈Ep(∞)

(‖B′u− C ′u‖r + ‖C ′u− C ′v‖r)

= sup
u∈Ep(∞)

(

‖(B′ − C ′)u‖r + inf
v∈Ep(∞)

‖C ′(u− v)‖r

)

= sup
u∈Ep(∞)

‖(B′ − C ′)u‖r = ‖B′ − C ′‖lnq .

Finally we get that

ρH(B′Ep(∞), C ′Ep(∞)) 6 ‖B′ − C ′‖lnq .

Lemma 7 is proven.

Proof of Theorem 1. The proof follows directly from Corollary 2, the representations (11)
and (8), and Lemma 7.

Proof of Theorem 2. The proof follows directly from Corollary 3, the representations (12)
and (9), and Lemma 7.

Proof of Theorem 3. As is known [27], for any X ,Y ∈Kn satisfying the condition ρH(X ,Y) 6 R,
the following inclusion is true:

X ⊂ Y + Br
R(0).

From here, taking into account Theorem 1, Theorem 3 follows.

Proof of Theorem 4. The proof is similar to the proof of Theorem 3, replacing Theorem 1 with
Theorem 2.

Proof of Theorem 5. 1. Item 1 follows from the definition of the operator norm and the fact
that the maximum of a convex function is achieved on the boundary of the convex set [22]:

‖B′‖lnq = sup
u∈Ep(∞)

‖B′u‖r = sup
∞∑

k=1

|uk|p=1

(
n∑

i=1

∣
∣
∣
∣
∣

∞∑

k=1

bikuk

∣
∣
∣
∣
∣

r) 1

r

=









sup
∞∑

k=1

|uk|p=1

n∑

i=1

∣
∣
∣
∣
∣

M∑

k=1

bikuk

∣
∣
∣
∣
∣

r









1

r

=









max
M∑

k=1

|uk|p=1

n∑

i=1

∣
∣
∣
∣
∣

M∑

k=1

bikuk

∣
∣
∣
∣
∣

r









1

r

.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 4 2024



370 IBRAGIMOV

2. By virtue of Hölder’s inequality, item 2 follows from item 1:

‖B′‖lnq 6









max
M∑

k=1

|uk|p=1

n∑

i=1






(
M∑

k=1

|bik|
q

) 1

q
(

M∑

k=1

|uk|
p

) 1

p






r









1

r

=





n∑

i=1

(
M∑

k=1

|bik|
q

) r
q





1

r

.

3. Also, for M = 1, item 3 follows from item 1:

‖B′‖lnq =

(

max
|u1|p=1

n∑

i=1

|bi1u1|
r

) 1

r

=

(
n∑

i=1

|bi1|
r

) 1

r

.

4. For r = p = 2 the operator norm can be represented in terms of the scalar product in R
n
2 :

(x, y) =
n∑

i=1

xiyi.

Then, taking into account item 1, the following representation is true:
(

‖B′‖lnq

)2
= max

u∈RM :
(u,u)=1

(Bu,Bu) = max
u∈RM :
(u,u)=1

(u,BTBu).

Due to the Lagrange multiplier method [29], the maximum point of the optimization problem under
consideration u∗ ∈R

M satisfies the following conditions:
{

∇
(

(u,BTBu) + λ(1− (u, u))
)

= 0,

(u, u) = 1,

{

2BTB − 2λu = 0,
(u, u) = 1,

{

(BTB − λI)u = 0,
(u, u) = 1.

Then, by definition, u∗ is a normed eigenvector of the matrix BTB corresponding to the eigen-
value λ∗, i.e.

(

‖B′‖lnq

)2
= (u∗, BTBu∗) = (u∗, λ∗u∗) = λ∗.

Item 4 is completely proven.

5. Item 5 follows from the representation of the operator norm B′ and the Riesz theorem on the
norm of a linear and bounded functional in lp [25]:

‖B′‖lnq = sup
u∈Ep(∞)

max
i=1,n

∣
∣
∣
∣
∣

∞∑

k=1

bikuk

∣
∣
∣
∣
∣
= max

i=1,n

(
∞∑

k=1

|bik|
q

) 1

q

= max
i=1,n

(
M∑

k=1

|bik|
q

) 1

q

.

6. To prove item 6, we take into account the representation |γ| = max{γ,−γ} for any γ ∈R and
consider the following chain of equalities:

‖B′‖lnq = sup
u∈Ep(∞)

n∑

i=1

∣
∣
∣
∣
∣

∞∑

k=1

bikuk

∣
∣
∣
∣
∣
= sup

u∈Ep(∞)

n∑

i=1

max
γi ∈{−1;1}

(

γi

∞∑

k=1

bikuk

)

= max
γi ∈{−1;1}

i=1,n

sup
u∈Ep(∞)

∣
∣
∣
∣
∣

∞∑

k=1

(
n∑

i=1

γibik

)

uk

∣
∣
∣
∣
∣
= max

γi ∈{−1;1}

i=1,n

(
∞∑

k=1

∣
∣
∣
∣
∣

n∑

i=1

γibik

∣
∣
∣
∣
∣

q) 1

q

= max
γi ∈{−1;1}

i=1,n

(
M∑

k=1

∣
∣
∣
∣
∣

n∑

i=1

γibik

∣
∣
∣
∣
∣

q)
1

q

.

Theorem 5 is completely proven.
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